

Kinetic Equations

Text of the Exercises

– 11.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d)$ be bounded with $\operatorname{div}_x b$ bounded. Assume that $u_0 \in L^1_{\text{loc}}(\mathbb{R}^d)$ and $f \in L^1([0, T]; L^1_{\text{loc}}(\mathbb{R}^d))$.

Prove that there exists a unique function $u \in L^\infty([0, T]; L^1_{\text{loc}}(\mathbb{R}^d))$ such that for any $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$ the map $t \mapsto \langle u(t, \cdot), \varphi \rangle$ is continuous in t and which is solution to

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = f, & \text{in } \mathcal{D}'([0, T] \times \mathbb{R}^d), \\ u|_{t=0} = u_0, & \text{in } \mathcal{D}'(\mathbb{R}^d). \end{cases} \quad (1)$$

Exercise 2

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d)$ be bounded with $\operatorname{div}_x b$ bounded. Assume that $u_0 \in C^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$. Thanks to the first exercise, we now that there exists $u \in L^\infty([0, T]; L^1_{\text{loc}}(\mathbb{R}^d))$ such that for any $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$ the map $t \mapsto \langle u(t, \cdot), \varphi \rangle$ is continuous in t and which is a solution to

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = 0, & \text{in } \mathcal{D}'([0, T] \times \mathbb{R}^d), \\ u|_{t=0} = u_0, & \text{in } \mathcal{D}'(\mathbb{R}^d). \end{cases} \quad (2)$$

Prove that the following statements are equivalent:

- $u \in L^\infty([0, T] \times \mathbb{R}^d)$ is a renormalized solution to (2);
- $u \in C^1([0, T] \times \mathbb{R}^d)$ is a classical solution to (2).

Exercise 3

Let Ω_1 and Ω_2 be two measurable spaces with σ -finite measures μ_1 and μ_2 respectively. Let $f : \Omega_1 \times \Omega_2 \rightarrow \mathbb{R}$ be a $\mu_1 \times \mu_2$ measurable function and assume that $f \geq 0$. Let $p \in [1, +\infty)$. Then

$$\left(\int_{\Omega_1} \left(\int_{\Omega_2} f(x, y) d\mu_2(y) \right)^p d\mu_1(x) \right)^{\frac{1}{p}} \leq \left(\int_{\Omega_1} \int_{\Omega_2} f(x, y)^p d\mu_2(y) d\mu_1(x) \right)^{\frac{1}{p}} \quad (3)$$